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ERROR BOUNDS FOR THE METHOD 
OF GOOD LATTICE POINTS 

SHAUN DISNEY AND IAN H. SLOAN 

ABSTRACT. New error bounds are obtained for the method of good lattice points 
for multidimensional quadrature, when m, the number of quadrature points, 
is prime. One of these bounds reduces the constant in Niederreiter's asymptotic 
error bound, if the dimension exceeds 2. Together they give very much smaller 
numerical bounds for all values of m . 

1. INTRODUCTION 

The method of good lattice points, developed by Korobov [4] and Hlawka [3], 
is a well-studied method for the approximate evaluation of integrals over the 
s-dimensional unit cube Is = [0, 1]s;> under the assumption that the integrand 
is 1-periodic in each variable. The method is reviewed by Niederreiter [7, 9]. 

If f is such an integrand defined on Rs, then the approximation is 

( l . l ) vC ~f (x) dx,;~, t (yg 

where m > 2 is a (large) positive integer, and g E ZS is an appropriate s- 
dimensional integer vector, or "lattice point". In the present work, as in the 
work of Korobov and Hlawka, m is taken to be prime. 

If f has the absolutely convergent Fourier series expansion 

(1.2) f(x) = E ahe,2ih x 

hEZs 

then, as is well known, the error in (1.1) is 

(1.3) ? f( m ( ) f(x) dx ah 

hg-0 (modm) 

Let 
s 

(1.4) r(h) = J7r(hi), r(h) = max(1, lhl). 
i=l 
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From (1.3) it follows that the least upper bound of the error for the class of 
functions whose Fourier coefficients satisfy lahl < r(h) a for h :$ 0 is 

(1.5) P (g, m) = (h) a > 1. 
h#4O 

h-g-O (modm) 

In the method of good lattice points, for fixed m and a one chooses a lattice 
point g which makes P (g, m) as small as possible. (Alternative selection 
criteria are discussed by Lyness [5].) A result of Niederreiter (obtained by 
combining (4.6) of [7] with Theorem 2 of [8]) is that for m prime (or a prime 
power) there exists a lattice point g such that 

(1.6) P1(g, m) < (I + 2C(a) (2lg0m + 0(81) + I = 0 (log m)s) 

For m prime, Bakhvalov [1] has even shown that a bound of order 

O((log m)(S- l)a/m 

is achievable, but he does not give the constants. 
In the present work we give new upper bounds on P (wg, m) for good choices 

of g. One of these (see Theorem 5) is of the same asymptotic order as (1.6), 
but has a smaller constant factor in front, except possibly for s = 2. 

The main results are stated in the next section, and proved in ?3. Some of 
the results depend on making an appropriate choice of a certain parameter ,B. 
Motivations for our particular choices are given in ?4. Finally, in ?5 we calculate 
numerical values for the various bounds, and compare them with known "good" 
values of P(jg, m). 

2. THE MAIN RESULTS 

Our first result makes use of the mean of P(jg, m), 

(2.1) M m Pt (, m), a> 1, 
gc=G 

where G is the set of all lattice points g = (g1, g2, ... , g) satisfying -m/2 < 

g?<m/2 and gj1#0 for j=I,...,s. 

Theorem 1. If m is prime, then 

(2.2) Mj(m)-( + ( )) +(m- 1)(1 2(1 - )4(a)) -1. 

This is proved in ?3, using techniques adapted from Niederreiter [8]. 
Since M,(m) is the mean of P(g, m) over g, it is obvious that there exists 

a point g for which P(g, m) is less than or equal to the mean. 
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Corollary 2. If m is prime, then there exists a lattice point g such that 

(I 
+ 

( ) 
(I2(1-m 

l 
2(() s 

P (g, m ) < 

(1 ?+()S ( _ _ _ _ _ _ If m > C(a) + 1, then an obvious inequality is 

1>1- 2(1 - ml')C(a) > 1 - 24((a) > -1 
mr-I m-1- 

This leads to the following corollary, slightly weaker, but more transparent than 
the results above: 

Corollary 3. If m is prime and m > C (a) + 1, then 

(2.3) M (m) < (I1 + 2C(ce))s1m, 

and there exists a lattice point g such that 

(2.4) P (g, m) < (I + 2C(ax))s1m. 

The bound in Corollary 2 is only of order 0(1/m) and therefore is worse 
than the bound (1.6) for large enough values of m. However, we shall see in ?5 
that its numerical values are useful for small and moderate values of m, and 
indeed are smaller than the bound (1.6) for all practical values of m. 

Bounds with better asymptotic form may now be generated by a simple ap- 
plication of Jensen's inequality (see Hardy et al. [2, Theorem 19]) 

(la,llp I' < la, qllq) , < q < p 

which implies, by (1.5), 

(2.5) P(g, m) < (Pf(g, m)) , 1<,B<(. 

Combined with Theorem 1, this yields the following result: 

Theorem 4. If m is prime and 1 < /B < a, then there exists a lattice point g 
such that 

(26 (g , m) < 
(mg (m))1 

(2.7) ((I + 2(fl))S + (m - 1) _ 2(1 - m-l-fl) ) _1) 

In principle, the best choice of /B in Theorem 4 is that which, for given m 

and a, minimizes (M,(m))t'1l. In ?4 we provide some motivation for two 
nonoptimal choices, 

(2.8) ,BI(m) = log m/(log m - s) = 1 + (logV7_i - 1)- 

and 

(2.9) /32(m) = 1 + (log(Vmli/b) - log log(V'_/b)) 1, 
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where 

(2.10) b = 2e-y+1/2 

and y = 0.57721 ... is Euler's constant. The second of these is the better in 
both theory and practice, and is the one we use in association with (2.7) for 
obtaining numerical bounds in ?5. The first choice flI, on the other hand, is 
analytically simpler and allows us to obtain in ?3 the following explicit bound: 

Theorem 5. If m is prime and m > esa/( 1) then there exists a lattice point g 
such that 

(2.11) P (g, m) < (e )S (2 log m + s)s' 

The estimate (2.11) has the asymptotic form C(log m)Sa/mo, where 
C = (2e/s)S'. Niederreiter's estimate (1.6) has the same asymptotic form 
CI(logm)sa/ma, with the different constant factor C' = 2s0(1 + 24(a))s. The 
ratio 

(3" = (q) + 24(a))) 

is greater than 1 for a < 2 and s > 1, and for all a if s > 3; and for fixed a 
it increases faster than exponentially with s. The larger bounds given by (1.6) 
are reflected in the numerical bounds computed in ?5. 

3. PROOFS 

3.1. Proof of Theorem 1. Since M (m) is the mean of P (g, m), all that has 
to be proved is the explicit expression for M (m). In this proof, summations 
over h and h will be over Zs and Z, unless specifically restricted. The notation 

Z* stands for summation excluding zero. 
We have 

M,(m) = E 1 
gEG h#4O rh 

hg-=O (mod m) 

(M - l)s LN(h)r(h)a- 
h 

where N(h) is the number of vectors g E G such that h * g 0 (mod m) . 
We can express N(h) as 

N(h) =E E e (J h * g) 
gEG j=0 
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where e(t) denotes e2 i . Then we have 

1 ZZZ (1. - 
Ma(m) = E E E e G h*g 1 - I 

M(M - ksm 7rh0 
j=OhgE 
m-1 00 00 

m(m - 1)s j=O h =-oo hS=-oo 

* E* e((j/m)hlgl) e((jlm)hsgs) - 1 

-m/2<g?r<m/2 -m/2<gs<m/2 r(hl). r(hs)a 

* e((j/m)hg) 
s 

m 
j=O 

m 
< 

I 
h -m/2<g<m/2 J 

Separating out the j = 0 term, we get 

(3.1) Mo()m) = -(1 + 2C'(a))s + - ( l T(j)) - 1, 

where 

T(j) _, e (J hg h < j <m- 1. 

h -m/2<g<?m/2 

Separating out the terms with h- 0 (mod m), we have 

T(j)= (hI E 1 
h 

rh 
-m_/2<g<?m/2 

+ Z I()k Z e(i-hg) 
h O (mod (m) -m/2<g<m/2 

- (m - 1) ( - E 1 
h h0O (mod m) 

=(m-1)(l+mt4(~ 
)) 

0 
( r(h) hr( )) 

- (m - 1) (I + 
2 

C(a)) - C(z(h) - 
I 

r(hrn) 

= (m - 1) - 2(1 m 
1 
-a)C(a) 

Putting this into (3.1) gives (2.2). o 
3.2. Proof of Theorem 5. If m > 1, s > 1, then 

1 1 
m > - log m + 1= + 2 

which, together with the inequality 
001 = <1 1+ 

(3.2) Ct) 1fl J dX +t-t>1 
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implies that m > 4(/31(m)) + 1 for all m > 1, s > 1, where /31(m) is given 
by (2.8). It follows that Corollary 3 is applicable with a replaced by /l3(m), 
giving 

MP,(m)(m) < (1 + 2C(/,3 (m)))S/m. 

The assumption m > esa/( l) is equivalent to 1 < /I1(m) < a, so Theorem 4 
asserts the existence of a g such that 

P( + 2r(Bt? (m)) )a<fl(m) (2(fl3 - 1)-1 + 3)s+/fl1 

(2 log /m+ 1)Sa/fJ< (2 log /h+ I)sa < 
mae-sa mae -Sa 

(e )Sa (2 log m + s)s 0 

4. MOTIVATION FOR CHOOSING /3 = /3 AND /3 = /32 

We begin with a one-parameter family of choices for / in Theorem 4, namely 

(4.1) B = logm/(log m - c) =1 + (log vm - 1) , c > 0. 

Proposition 6. If m is prime and /3 = ,B(m) is defined by (4.1), then 

(4.2) (MfB(m))a/fl I(2s ) (g ,)a as m x . 

Proof. Using ,B- l as m- oo and ; (t) = (t- 1) 1 +0(1) as t 1 (forthe 
latter see Whittaker and Watson [10, ? 13.21]), we obtain 

CA,B = (,B _ 1)- + 0(1) = logWi 0() 

and hence, using (2.2), 

(2 log >1_)s (loIg m) 'SI m \m} 

Since 1/= 1 - c/logim and m C/logm = eC, the result (4.2) follows. o 

It is now reasonable to choose the parameter c in (4.1) so as to minimize the 
constant factor in the asymptotic expression (4.2). Elementary calculus shows 
that ecicS is minimized by the choice c = s. With this choice (4.1) yields 

/ = . 
The choice /3 = 32 does not improve the asymptotic expression for (M )l/: 

in fact, it can be shown that the choices #I and /2 both yield the same asymp- 
totic form, 

(4.3) (Mg (m))'>1J (k) (log .) , i = 1, 2 . 
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The motivation for choosing /B = ,B2 comes from the following more careful 
argument. Let F(/B, m) be the bound in Theorem 4, i.e., 

(4.4) F(/3, m) = (M(m)) 
Then 

aF(,B, m) =F(/3, m) log 2 ?mf + Aa0 

= - +F(/3, m)log(H(/3, m)), 

where 

(4.5) H(/3, m)= M (m) exp y-M() ,9/(m)j 

Thus, OF/Ofi = 0 if and only if H(,B, m) = 1; and it can be shown that 
the stationary value of F is in fact a minimum. The next proposition shows 
that the choice /B = ,B2 is in a certain sense asymptotically optimal, in that 
H(/32(m), m) -+ 1 as m - * oo, whereas this is not true for the choice /3 = 3,k . 

Proposition 7. If m is prime and s > 3, then 
(i) H(fl/(m), m) -* +oo as m -* oo, 

(ii) H(/32(M), m) -*1 as m - * oo. 

Proof. Let Ci = C (3(in(m)), C = C'(#i (m)), and xi = (Bi (m) - 1) 1 for i = 
1, 2. Then xi = log,/-i - 1 and x2 = log(fiui/b) - log log(Q%7m/b), and in 
both cases xi = log / + 0(log log m) as m - * oo . Since 

c( ) = (t - )- 
I 

'(t), 

where e(t) -* 0 as t -* 1, we have 

(4.6) ci =xi+0(1) asm-*oo, i= 1,2, 

(4.7) 1+2Ci=2xi1+ ?Y2+ +?-) asm-*oo, i=1,2. 2x1 x 

Also 4'(t) = -(t - 1)2 + 0(1), which implies 

= -x + 0(1) as m - *oo. 

We also require 

(4.8) m I-fl,(m) = m- l/x, = m- I/(log+0(loglogm)) = e-S 1 + o1)) 

From (2.2) and (4.8) we have 
1 1 

M (i) = -(1 + 2Ci)s --(1 + 2(1 - e5s(1 + o(1)))sCi) /3,(m) () MM 

+0((logm) /m2) 

= ((1 + 2Ci) - (1 + 2(1 - e s)sCi)(1 + o(1))) 

In(I + 2Ci)s(I + O(l/X2)) 
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since s > 3. Similarly, by differentiating (2.2) and applying (4.6) and (4.7) we 
obtain 

(4. 10) 0 %fl(m) | _s (Il + 2Cj) sI x2(l+Ol /x2). 
Ofi m 0x 

fl=f,(m) 

Thus, the argument of the exponential function in the expression (4.5) for 
H(,8, m) is 

-/3i(rn) OMfl(m) _ (1 + 1 /xi)2sx72(1 + O(l /x2)) 

MP, (m) a3 IA, (I + 2Cj)(l + 0(1/x2)) 

s(xi i + 0(1)) 

(4. 1 1) xl (I1 + (2y + 1) )2xi + o(I 1 xi)) 

=s (x+1 +(I)) (I - 2y+ 1 (-)) 

=s (xl +I 2 Y + o(1)) 

Using (4.9) and (4.11), it now follows from the definition (4.5) of H(,B, m) 
that 

H(/31(m), m) s= (2x +0(1))exp (x+ 2 +o(l)), i= 1,2. 

In particular, 

H(fl (m), m)1!/ = (2 log / + 0(1)) exp (1- 2 + o(l)) 

-* +oo asm-oo , 

whereas 

H(fl2(M), m) I/s = 2 log -2 log log + 0 l)) 

1 / '/~~Ih-2y x expi-loglogb+ 2 +0(1)) 

=210g 0/ ( + 0(0)) (log >)/_ exp ( + 0o()) 
b bb / 

'exp ( 2 ) =1 as m -oo. 0 

5. NUMERICAL ESTIMATES 

In Tables 1, 2, and 3 we show numerical values of theoretical bounds for the 
case a = 2 and dimensions s = 3, 6, and 10. The bounds are calculated from 
Theorem 1, from Theorem 4 with /B = /32(m) (see (2.9)), and from Niederrei- 
ter's bound (1.6). Additionally, to give some perspective on what might be 
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achievable, we show some known "good" values of P2(g, m) for comparable 
values of m. These are taken from the tables of Maisonneuve [6]. 

The tables show, perhaps surprisingly, that the bound given by Corollary 2 
is a quite effective bound for all practical values of m, notwithstanding its 
inferior asymptotic behavior. The bound given by Theorem 4 with /B = ,B2(M), 
though asymptotically better, produces a smaller bound only for values of m 
exceeding about 10+1 , and even then makes only a modest improvement. 

The bound given by (1.6) exceeds both of the other bounds by many orders of 
magnitude, especially when s is large, and is therefore less useful as a numerical 
estimate. 

TABLE 1 
Bounds on P2 for s = 3 

m Cor. 2 Thm. 4 Bound "Good" values m g 
(9 = =2) of (1.6) of P2(g, m) 

6.8(-1) 6.9(-l) 8.0(3) 2.2(-1) 98 (1, 16, 44) 
103 6.8(-2) 7.1(-2) 7.2(2) 5.3(-3) 1010 (1, 140, 237) 
104 6.8(-3) 5.4(-3) 3.9(1) 1.3(-4) 10,007 (1, 544, ...) 
105 6.8(-4) 2.9(-4) 1.4 4.9(-6) 100,063 (1, 53584, ) 

1 06 6.8(-5) 1.2(-5) 4.1(-2) 

TABLE 2 
Bounds on P2 for s = 6 

mn Cor. 2 Thm. 4 Bound "Good" values in g 

(9 = 12) of (1.6) of P2(g, m) 
I103 6.2 1.1(1) 6.0(11) 
1 04 6.2(-1) 6.3(-1) 1.6(11) 2.9(-1) 10,007 (1, 2240, ... 
105 6.2(-2) 6.5(-2) 2.1(10) 1.8(-2) 100,063 (1, 43307, ) 

1 06 6.2(-3) 6.6(-3) 1.7(9) 
107 6.2(-4) 5.6(-4) 1.1(8) 

TABLE 3 
Bounds on P2 for s = 10 

in Cor. 2 Thm. 4 Bound "Good" values mn g 

(f = 12) of (1.6) of P2(g, in) 
764 2.1(2) 6.4(3) 1.0(24) 
105 2.1(1) 5.5(1) 7.4(23) 2.1(1) 103,661 (1, 45681, ...) 

106 2.1 2.5 2.5(23) 
107 2.1(-1) 2.1(-1) 5.1(22) 
10 2.1(-2) 2.2(-2) 6.9(21) 
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